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1. Introduction 

Over the past quarter century, a considerable amount of work 

has been devoted to the study of the time-dependent linear 

oscillator 

; + k(s)x=o, (l-l) 

which represents betatron oscillations in accelerators and storage 

rings. Courant and Snyder/l/ first found that a conserved 

quantity for Eq.(l-1) is 

(j(S) ~2-+2+(,x-p 
2 (s) (3 

CSG ,‘I, (l-2) 

where x(s) satisfies Eq.(l-1) and g(S) satisfies the auxiliary 

equation 

fs ‘i - +r;’ + KCS$ = 1. (l-3) 

Several derivations of the dynamical invariant(l-2) have been 

given in the literature: The exact invariant was derived by Lewis 

and Riesenfeld/2/ on the assumption of quadratic invariance. 

Lutzky/3/ derived the invariant(l-2) from Noether's theorem and 

recently Korsch/4/ presented a proof of the dynamical invariance 

of (l-2) , using the method of dynamical algebra. An early 

discussion about the general interrelation between the 

differential equation(l-1) and (l-2) can be found in an article by 

Milne/5/. In addition, a physical meaning of the origin of the 

invariant was presented by Eliezer and Gray/G/, with the help of 

auxiliary plane motion. 
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It is the aim of the present note to review the three 

different methods for deriving the dynamical invariant (l-2) and 

to investigate possibilities of applying them to the nonlinear 

betatron oscillation 
. . 
x + kccS)X + Kis)XL = 0 , 

which is derivable from the Hamiltonian 

H(x.P; 5) i- K(vt’) + -$ kis>x’ 
. 

(l-4) 

(l-5) 

2. Derivation of Invariant 

2-a Time-Dependent Linear Canonical Transformation 

We shall show explicitly that a time-dependent Hamiltonian 

H(r,p;s> = &(P% + kCS~X’1 / 
(2-l) 

can be converted to time-independent form with the help of a time- 

dependent linear canonical transformation and a change of time 

scale. 

The canonical equations of motion obtained from (2-l) are 

; =5 aH 
ap = P, (2-2-a) 

i, + = - kWx* (2-2-b) 

First we require that the Hamiltonian in Eq.(2-1) is transformed 

into the form 

+fS) 
H’(X,p ;s’, = y ( pa+ x=1 / (Z-31 
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with a time-dependent function f(s) which is determined later, by 

means of the time-dependent linear transformations 

X= (2-4-a) 

P= /\:(sm + my , (2-4-b) 

Because we assume the canonical transformation, the time-dependent 

coefficients A:(s) I A:(s) I I\:(s) ,and A:(s) in Eq.(2-4) must satisfy 

the relation 

n:o> /2’,(S) - p:w /t:w = 1 . (2-5) 

The canonical equations of motion obtained from Eq.(2-3) are 

k = Fp’ = +(s) p , 
b =--~L+)X~ 

(2-6-a) 

(2-6-b) 

In order to determine the unknown time-dependent coefficients in 

(2-31, (2-4), the relations in (2-2),(2-4),and (2-6) are combined 

in such a manner that the new canonical variables are replaced by 

the old ones. This is effected by taking the time derivatives of 

the relations in (2-4), replacing X and P by the expressions (2-6) 

I and then substituting x and p by the quantities given in (2-2). 

Finally we equate the coefficients of like powers of x, p, x: and 

pafrom both sides of the equations and obtain the relations among 

the coefficients 

I;: = k(S) p: + fwp: / (2-7-a) 
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(Z-7-b) 

-a 
AI = -+/I: + I<(S) ji: , (2-7-c) 

+a A, = - +q: - /\t . (2-7-d) 

The coupled equations (2-7) may be solved by the well-known matrix 

method. However we show a set of particular solutions satisfying 

Eqs.(2-5),(2-7). Taking Ai=0 and replacing 4: with p(s), it is 

then trivial to obtain the solution for A', from (2-5). The 

solution is 

/J: CS) = F’CS). 

substituting A!,=o, A:= p(s), and (2-8) into (2-7-b), we have 

f CS‘) = P-=0,, 

(2-E) 

(2-9) 

Also substituting the time derivative of 

(2-7-a), we have 

0, and (2-9) into 

n: = - f;(S)* (2-10) 

Eq.(2-10) is equivalent to Eq.(2-7-d). Next, substituting (2-8), 

(2-9) and (2-10) into Eq.(2-7-a), we obtain the differential 

equation satisfied by P(S), 

* - -i- KU’, p = P--*3 P (2-11) 

If we replace P(s) with fi, the differential equation for the 

so- tailed betatron amplitude function P (S) will be easily 

written down 
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;pj ’ - Trja + ‘t3%CS) = 1 . 

Furthermore, if the change of independent variable 

S 

+ (S) = s f 
<s’) ds ’ 

/ 

is made, the Hamiltonian H' becomes 

H”( X,P ;+) = i(P L+ x2>, 

(2-12) 

(2-13) 

(2-14) 

Evidently the new Hamiltonian H" is a constant of motion in the 

coordinate system of (X,P;+). It is apparent that Eq.(2-4) is 

invariant in the old system (x,p;s); 

d H ” clH”dQ> -- 
- = d+ds dS 

Next let us show (2-14) as a function of P (s), x and ;(. 

Using (2-8) and (2-lo), we write the s-dependent coefficients of 

), A;(s), and /\f(s) in (2-4-a),(2-4-b) with the A:(s), A:@ 
function (s P ,I , 

/(fS) = p-&,, , 

/f:cs,= 0, 

A; CS) = - 2 p-t,,, r’(s) , 

/j; (5) = p”m. 

(2-15) 

Setting these values in (2-4-a),(2-4-b) and substituting them 

into (2-14), we obtain the invariant 

/-it= +[ (+-‘p x&)2, c$-“ld 1. (2-16) 

Setting p=i and H"= I in (2-16), we write the dynamical invariant 
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in the form 

I = -+, r= + I: ($Q -ptnq* (2-17) 

In addition for reference, we show that the generating 

function for the canonical transformation (2-4-a),(2-4-b) is 

easily derived. 

Using a generating function F=(x,P;s) of the second type, we 

write 

ar’ 
P = ax ‘= + ( P- n: 4 (2-18-a) 

7, . 

X aFL 
'7c =q = A, , (2-18-b) 

From (2-18-b), we assume 

Fab.P:s) = /l: p + 3(x; s), (2-19) 

where g(x) is an arbitrary function of X. Substituting (2-19) 

into (2-18-a) and equating the term of P and x on both sides, we 

obtain 

2% /1: 
ax - = -2”. 

From (2-20), g(x;s) becomes 

1’ 
4: x;s) = - - 

a 
x* + h(s) . 

(2-20) 

(2-21) 

Furthermore, setting h(s)=0 in (2-21), we have the generating 

function 

A: ~‘r%,p;s, = /cP - -&. (2-22) 
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2-b Dynamical Algebra 

We can constrc!ct easily the dynamical algebra for the 

Hamiltonian 

HCx,p;s) = i? l,,ts> J-‘, cx. PI 
nsl I (2-23) 

following the usual procedure. Here the dynamical algebra is the 

Lie algebra of the phase-space functions p-, which are closed 

under the action of the Poisson bracket L , 3: 

(2-24) 

where the C&are the structure constants of the algebra. For the 

Hamiltonian (2-23), fm h as a set of Poisson brackets 

[r, ,r,j = -2t7 , [ r,t&j = -4 r I: r,,r,l =r,, (2-25) 

From Eq.(2-25) we see easily that the algebra is closed. 
r The structure constants C,, are described by the matrices 

&( ; -*I ;), c;, =(; ; -;) cA=(; yg(2-26) 
, 

The time development of a phase-space function I is given by 

d1 al 
ds = ar + I: 1.~11, 

and the dynamical invariant I is characterized by 

d= 0 
a1 

bs= , i.e., as=- II, 4, 

(2-27) 

(2-28) 
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We now look for an invariant that is a member of the dynamical 

algebra 

(2-29) 

which gives, with (2-28), 

; [ i, +im ccw h,W;t,w]rr =o, (2-30) 
r= I 

and therefore the system of linear first-order equations 

5,. + f[;C:,,w h,cs,]L=O, (2-31) 

with h,(s)=l, hz(s)=O, hJ(s)=K(s). The coefficients Al (s) of the 

dynamical invariant 

T= (2-32) 

are solutions of the differential equations 

k(Z) = (+ rr,,o)(~J~ (2-33) 

Setting A,= pc(s), we find 

7L = (2-34-a) 

i3 = - tccs’l gc , (2-34-b) 

II3 = + lwpc (2-34-c) 
. 

Equating the derivative of (2-34-c) with (2-34-b), we finally 

obtain 

. . . 

(3' 
-I- 4t+ + 2i;tr+= 0, 

(2-35) 
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which has the integral 

+- fL -(ic - + &icz + KCsyc = c, (2-36) 

with integration constant C. The solution (2-36) determines the 

x,,(s) and the dynamical invariant (2-33) is therefore expressed 

in the form 

[ c x2+ (&x -pcP’)r], (2-37) 

The arbitrariness implied by the presence of the constant C is 

illusory, as may be verified by making the scale transformation 

p(s) = c-Q,, (2-38) 

B (S 
equat 

) being a new auxiliary function of s. The auxiliary 

,ion which B (s) satisfies is 

+g;; -&pa + wy=1. (2-39) 

After discarding a constant multiplicative fatter C+ and setting 

P=i, we write Eq.(2-37) in the form 

I = $9 3 (~x-p~y] . (2-40) 

2-c Noether's Theorem 

The formulation of Noether's theorem used is the one given by 

Lutzky. If the transformation 

leaves the action integral k (x,i;s) ds invariant, 



(2-41) 

where f=f(s,t), and 
4- a-4 h aC+;Ei,A=g+;g, +s3;E, = as 

then a constant of the motion for the system is given by 

3 = ($5 -nq+ -$I/+$, (2-42) 

The Lagrangian 1, = &(?K(s).x' ) gives the equation of motion 

(1): using this lagrangian in (2-41) and equating coefficients of 

powers of l to zero, we obtain a set of equations for $,n,f 

(2-43-a) 

(2-43-b) 

(2-43-c) 

(2-43-d) 

Eq.(2-43-a) implies that $is a function of s alone. From 

(2-43-b) and (2-43-c), we obtain the results 

x + q-e’) (2-44) 
, 

t cz, 5) = + ‘$ XL+ +s> x + CCS), (2-45) 

where Gt)+ K(s)*+(s)=0 and C(s) is an arbitrary function of s 

alone. Choosing C(s)=O, q(s)=0 and substituting (2-44),(2-45) 

into (2-43-d), we find 
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‘5’ + 4KCr) r, + 2 kCSl$ =o. 

Eq.(2-46) has the integral 

+q- - $ra -I- wp= c, 
where C is an integration constant. Replacing $ with 

(2-44) , (Z-45), and (2-47), we have 

ncx/ 5) = -& (&xc, 
f(xt 5) = $ ;;,lS) x2, 
+ac $4 - ; &’ + IaS) (3: = c, 

Further using (2-48-c), we obtain 

-I (x,53 = &I + t -$-; - K(S) p‘ -j x2* 

(2-46) 

(2-47) 

@s) in 

(2-48-a) 

(2-48-b) 

(2-48-c) 

(2-49) 

Finally setting $ =g tin (2-42) and substituting (2-48-a),(2-49) 

into (2-32), we write the invariant 

a = -q a@ cxL+ (@x- p;q (2-50) 

The arbitrariness by the presence of the constant C can be removed 

in the same way as in the previous subsection. 

3. Cosiderations of Arbitrariness Appearing in Each Method 

The unknown variables, integration constants, equations of 

condition, and arbitrariness finally left as their result can be 

summarized as follows: 
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unknown variables 
8. 

equations of condition arbitrariness 

integration constants 

2-a 

4 ($1 IC (AI 1 AX - A:At = 1 , 
iuteyb* cowh*s 

A', (5) 
c, , c 

2 . 

Ah 
I CtA:l 

d/A 
I C(E) ds- t-la/A * /AZ 

A: q 

COutMd f Potan di4.y. 

/c(S) 
I c c/It, 

n:cs, =o, 

IccA:)=o. 

+pv -$(ctpfr)=l~ 

9 7 2 

2-b 

2,W IC(a,) 

%(S) ICh) 

it3 6) ICCA?) 

6 

da %I 
z= rIba, a: IL 

0 il-) 

3 

iWteyd+o~ COU&~~ 

c, Cl, cz 

ccu;~ j?v* 44. 0%. 

+p i; - $6 z*pkrl=$, 
3 

2-c 22 =o 
rc,(O ax ' 

an I af, 
ST =O, 

;wytdl h COtehwT$ 

k(S) 
-A - &. 

1W$) ax 2’ 

an ‘IF,. -~~~~ - - “5 - 052 
I Crh) 

- -~“5)- 
as ax ax =o 

Q(S) j_ 
ICs(*) 

+ &‘- mKz-&‘;$) cb-:y kr- dAt* ‘G- 
I 

f (Sl TCr( j, 
TCs CM)= o , 

ICS cf, ICd+)=O. 

9 L 
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where IC(A) is the integration constant appearing when the 

differential equation for A where A symbolizes the variables A!,, 

A;, $ , n, and f is solved and ICs (A), ICx (A) are integration 

constants appearing when the partial differential equations for A 

are solved. 

We already know that the arbitrariness coming from C can be 

removed. Therefore, adopting the periodic solution of the 

auxiliary equation 

+p;; ’ ‘&+ kq3L:1, -Fe 
with K(s+L)=K(s), where L is the circumference of a ring, we can 

decide uniquely the dynamical invariant I 

I = z+s,rx~ + ($-@‘] , 
with p(s)= p(s+L). 

4. Towards an Invariant for Time-Dependent Nonlinear Betatron 

Oscillation 

The existence of invariants for non-harmonic systems was 

recently demonstrated in several articles. Ray and Reid/T/ 

derived the invariant for the nonlinear equation of motion 

using 

invar 

invar 

Noether's 

iant of (4-l 

iant derived 

theorem. Kaushal and Korsh also presented the 

1 with the help of dynamical algebra. The 

by them is written as 

. . 
;L + 

t3 k(s) x + - = 0 
x’ / 
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I = & [ 28 (f$ c ($+ ((dc,)r - r-0; f], (4-Z) 

where p(s) satisfies the auxiliary equation 

. . p + k(s) r = +3 , 
with the integration constant C. 

Leach/g/ attempted to construct the invariant for 

time-dependent nonlinear harmonic oscillator of more interest to 

accelerator physicists, 

. . 
r + I<(S)X + l&d = 0, (4-4) 

using the so-called time-dependent nonlinear canonical 

transformation. However, such transformations must be considered 

as infinite series; if we use a generating function of the second 

type FZ(x,P;s) so that 

aFZ 
P =- 

ax , )( = a’ 
, (4-5) 

we write 

7% P;s) = x P (J-6) . 

Difficulties with convergence, therefore, are expected. These 

difficulties are seen in other methods. For instance, the 

dynamical algebra for the system (4-4) does not close for finite, 

but becomes an infinite set. Namely, the system of linear 

first-order equations (2-31), which determines the invariant I, is 

infinite in extent. This means that there are questions of 
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convergence and existence of solutions, which are related to the 

existence or non-existence of dynamical invariants. 

Hence, it seems difficult to describe the invariant of (4-4) in 

the form of a finite polynomial. 

Nevertheless, results of numerical studies for the system 

(4-4) /10/,/11/,/12/, seem to indicate the existence of the 

invariant, which is equivalent to the existence of invariant 

curves on the Poincarg map. For simplicity, we consider betatron 

oscillations receiving kicks due to a sextupole field located on 

the orbit. Such a system is described in the term of the 

Hamiltonian 

Hcx,p;s)= ; (P’ + K(slxz) + $ x3 h’(s) , (4-7) 

where E is the parameter of the sextupole field strength. Using 

time-dependent linear canonical transformation and time scale 

change discussed in 2-a, 

r=Qs?, . 

Pq + Jg”l (Jpcr,))7 
qic 

qt,,=; \ s G,, . ’ 

we can transform the Hamiltonian (4-7) into the form 

(4-S) 

l-i??, P,;Q) s;p(P,a+ ?‘)+ E 9$$)6cs), (d-9) 

with the betatron tune of Q. Further, setting Qpf<j$%)to fr$), we 

have 

I&?. I$ ;+) = g ( p;+ ?‘)++E&q3S(+)* (4-10) 
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The canonical equations derived from the Hamiltonian(4-10) are 

equivalent to the recursion equations, 
/ 

P? 

ii 
= 

? 
(4-11) 

where k is-E@ '(0) . If we replace ( 1 , p,) into (x,y) and 

assume Q=O.25, the recusion(4-11) become 

y'= -x , 

x'= y + 1x2. 

Furthermore, if the scale change 

4 
-I 

x = x, 

Y = Irk 

(4-12) 

(4-13) 

is made, the recursion equations (4-12) become 

Y/= -x , 

xl= Y + x2. (4-14) 

Hence, the system (4-7) becomes free of machine parameters. This 

is desirable to study the universal properties for the 

system (4-7). 

Fig.1 shows the Poincar/e map obtained by the recusion 

equations (4-14). A sequence of mapping points around the origin 

seems to be located on the closed curves. However, it is 

apparently impossible to prove strictly this expectation by finite 

iteration of (4-14). 
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If there is an invariant for (4-7), then the invariant 

function I(X,Y) must be invariant under the transformation (4-14): 

I(Y+x' ,-X) = I(X,Y). (4-15) 

So far, we do not know such a function I(X,Y). In addition, the 

question for stability of (4-7) is still left. It can be reduced 

to the question of the finiteness of the progression, which 

consists of the sequence of numbers derived from the 

one-dimensional recursion equation between three terms, 

Xn+l + Xn-1 = X,' , (4-16) 

which is obtained by substituting the first equation into the 

second in Eq. (4-14). But we do not know the mathematical proof 

for the finiteness of such a progression. All these questions are 

still open. 
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